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A new class of control and optimization problems for the motions of oscillatory systems, utilizing adjustable variation of the 

parameters, is considered. Forms of the equations of motion are proposed suitable for the use of asymptotic methods of non- 

linear mechanics and optimal control. The basic control modes are investigated: by bang-bang-type variation of the acceleration, 

velocity or the value of a parameter within relatively narrow limits. Approximate time-optimal and time-quasi-optimal control 

laws are constructed for non-linear oscillatory systems with regulated relative equilibrium position and stiffness. Some interesting 

features of the motions are observed and discussed. 0 2001 Elsevier Science Ltd. All rights reserved. 

1. STATEMENT OF THE PROBLEM 

A class of controllable mechanical systems with finite constraints, which depend on adjustable 
parameters, is considered. To fix our ideas, we will confine our attention for the present to the case of 
the translational motion of a rigid body (a point mass) along a fixed curve in an inertial Cartesian system 
of coordinates 

r = r(s, s), r=(x,y,z)? ~EQ, SGS (1.1) 

where q is a generalized scalar coordinate, s is an adjustable parameter; Q and S are one-dimensional 
connected sets and X, y and z are sufficiently smooth functions of q and s. Differentiating expression 
(1.1) with respect to t, we obtain the kinetic energy K of an object of constant mass m (m = 1) represented 
as a standard quadratic form in 4 and S 

K = K(q, 4,s, S) = X (a*(q* s)cj* + 2&q, s)@ + c2tq, sjs’ ) (1.2) 
#2 a2 =rq , b=(ri,r,‘), c2 =r12 

To avoid singularities in the equations of motion, we will assume that a’ > 0. 
It is assumed that the object is driven by potential forces described by a function W of r and s 

W(r, s) = W(r(q, s), s) = U(q, $1 (1.3) 

where U is a fairly continuous function of q and s in the domain considered in (1.1). We will use the 
Lagrange function L = K - U to obtain the equation of motion in terms of q 

a24 + a+j2 + Ui = -2aa& - bj: + (CC; - b:)j’ (1.4) 

Let us assume that when s = const Eq. (1.4) has a stable point of rest 4 = 0, q*(s), that is 

U&.,(s), s> = 0, u;; (q*(s). s) > 0, s E s 

Then, in some neighbourhood of that point, system (1.4) will perform non-linear oscillations with 
constant energy E, amplitudes qf(E, s), period T(E, s) and phase cp: 

tPtik1. Mat. Mekh. Vol. 65, No. 1, pp. 3-14, 2001. 
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ds t = J 7+const, 
9 

T=27 +, 

9- 9 

o(E, s) = $ (1.5) 

S=cj+(q E s)=ffi(E-U)%-‘, , , cp=or+cpO 

The constants E and cp* in expressions (1.5) are determined by the initial values of the Lagrange 
coordinates q, 4 and the value of the parameters. 

For applications one is naturally interested in formulatint the following control problem: it is required 
to steer system (1.4) from an arbitra 

r 
initial state q”, Q”, s , So to a prescribed final state, in particular, 

to the state of rest q*(s), 4 = 0, s = s , S = 0, in a limited time Q, by choosing a control action, such as 
i, from an admissible class of functions. In the controllable case, one formulates the problem of 
optimizing motions with respect to some performance index (functional) of the control, such as time- 
optimal@, allowing for various kinds of additional conditions and restrictions [ 11. 

In what follows, in order to use asymptotic methods for the optimal control of oscillatory systems 
[2-4], we will consider the situation in which the admissible value of the control function i is in some 
sense small: ? = EW, where 0 < E G 1 is a small real parameter, w - 1, and the duration of the process 
ff - E-I is asymptotically long. It is required to vary the value of the total energy E($) = Ef in a suitable 
manner (by a relative magnitude of the order of unity). In this formulation, besides controllable 
oscillatory motions, one can also study rotational-oscillatory motions: a, b, c and U must be periodic 
functions of q. This natural applied approach assumes the use of the method of averaging with respect 
to a fast variable (with respect to the phase cp [5, 61). 

Another case which is reducible to a controllable system of type (1.4) concerns an object of a more 
general type, e.g., a rigid body in which a certain fixed point, such as the centre of mass, may move 
along the curve r(q,S) (1.1) an d , in addition, the body takes an orientation which depends on the variables 
q and s. Then the angular velocity vector o = (oi, w2, c&, projected onto axes attached to the body, 
and the kinetic energy Q of rotation have the form 

0 = Q(9, s)9 + *c(9, s)S (l-6) 

where Z is the inertia tensor (matrix) of the body relative to the given point, and the vectors @ and Y 
are defined in terms of kinematic relations between o and variables characterizing the orientation of 
the body relative to the inertial system. These are usually the relations between o and the Euler or 
Krylov-Euler angles, quaternions, direction cosines, etc. and their derivatives. For example, in Krylov- 
Euler angles we have [7] 

0, =d!cospcosy+@sinys@,9+V,S, CL = a(9 s) 

w* = -cccosBsiny+pcosyE~2~+~2S, p=p(q,s) 
co3 =&sinp+~E@+j+YI& Y = Y(9* s) (1.7) 

dr = ai4 + a:S, p = p;cj + p:s, y=y;Ij+y:s 

Expressions for @ and 9 similar to (1.7) are obtained if one uses the classical Euler angles or other 
variables [7]. 

If the rotating body is subject to generalized potential forces (torques) described by a function N, 
then, proceeding as in the case of (1.3), we obtain an expression for the potential energy of rotation M 

N = NW, a, p. y. s) q M(9, s) (1.8) 

Setting up the Lagrange function allowing for rotations for a rigid body and proceeding in the standard 
manner, we obtain an equation of motion in the variables q and s, similar to (1.4). The appropriate 
coefficients for a*, b and c2 and the functions K, U are sums of quantities defined by formulae (1.2) 
(1.6) and (1.3), (1.8). 

More specific formulations of control and optimization problems for various modes of adjusting the 
parameters will be given in Section 2. 
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2. THE HAMILTONIAN FORM OF THE EQUATIONS 
OF MOTION AND FORMULATION OF 
THE OPTIMAL CONTROL PROBLEM 

The direct application of asymptotic methods to obtain approximate optimal controls for a system of 
type (1.4) is difficult, since the parameter s need not be a slow variable and may vary in a time ff - E-~ 
by an analogous quantity. To simplify the formulation of the problem, therefore, one usually assumes 
that the equation does not contain s explicitly; then E and 

, to within the prescribed accuracy O(E). 
In other specific situations the right-hand side of Eq. (1.4) may not depend explicitly on j: (when 

b = 0), as is the case if the vectors ri and r: are orthogonal. It is then natural to formulate the problem 
of varying the variables E and s by adjusting the quantity v, v = EU, u - 1, within comparatively narrow 
limits [2-4]. 

Applied control problems for dynamic objects, in which control is effected by electromechanical, 
pneumatic, hydraulic, etc. mechanisms, often produce models in which the velocity 3 is essentially a 
bang-bang control of comparatively small magnitude, while the acceleration $ is approximated by a 
generalized impulse function (Dirac &function) of low intensity. In this case, which is of practical 
importance, use of the non-linear equations of motion in their Lagrangian form (1.4) leads to 
considerable analytical and computational difficulties. Application of the optimality conditions of the 
maximum principle [1] or of the asymptotic methods of non-linear mechanics [2] is problematic. 
Nevertheless, it is important to note that the coefficient b = b(q, s) of s’ in Eq. (1.4) does not depend 
explicitly on 4 and S either, that is, the corresponding quadrature with respect to t will be defined 
regardless of discontinuities (jumps) in the derivatives 4 and S. 

As it turns out, these difficulties are artificial, being due to an inappropriate choice of the variables 
q and 4 to describe the dynamics, which leads to a singularity in the equations. Changing from these 
variables to Hamiltonian variables q andp, where p is the momentum, by a Routh transformation 

p=aL/ai, f&q, p, 3, S) = P4 - uq, 4, sv S) (2.1) 

one can obtain equations of controlled motion that do not contain i. Indeed, it follows from (1.2), (1.3) 
and (2.1) that 

4= H; =a-*(p-bu), H=xa-*(p-bv)*--cC;t*+U 

p 9 
’ Z-H =a$-‘(p-bv)* +b;a-*(p-bu)v +c;cv* 4; (2.2) 

s=v, u =&u, u- s u c u+, u-c 0, u+> 0 

In this equation and in (2.1) His the Hamiltonian of the system, which defines the first integral (energy) 
when E = 0, i.e. S = 0. It is assumed in the equations of motion (2.2) that 0 < E % 1 is a small parameter, 
while the control u may take values in the range [u-, u’]. As before (see Section l), considering the 
uncontrolled system (2.2) (i.e. where E = 0), one obtains relations of the type (1.5), which define 
oscillatory motions. For the slow variables E and s and sufficiently small values of E, the control and 
optimization problems are formulated in the standard way [24]. The equations of the controlled motion 
in standard form are 

,$ = paT5(b;a - aib)(p - bv )u + pa-*c&v * -a-*bU;v - 

-p2a-3a;u + U;v = EFU + O(E*), E=Ka-*p*+U (2.3) 

S=v, lJ=Ell, u-Gudu+ 

The variablep in (2.3) is related to E, q and s (and u) by formulae (2.1) and (1.5). This enables us 
to average the right-hand sides of the controlled system with respect to the phase cp (after determining 
u) by integrating with respect to q, on the basis of the integrals of the unperturbed system [2-4]. For 
that reason, explicit expressions for the perturbed phase cp will not be needed in what follows; moreover, 
this phase is not determined with adequate accuracy (see below). 

Equations of the type (2.3) may also be obtained and used in the case of the control s’ = EW, when 
Eq. (1.4) does not contain the variable s explicitly. One then takes v = S as the slow variable. We recall 
that the variable s is not slow; when u, b, c and U depend explicitly on s, this essentially complicates 
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the use of the asymptotic methods of [3,4]. Thus, if K = K(q, 4, v), U = U(q), we obtain the following 
equations for E and u 

Ij=-~(a-~6(~-bv)+c~v)wz~Gw, u’ =EW, w- s WC w+, E= H(q,p,u) (2.4) 

Note that the terms in (1.4) that contain ai, 6: vanish. The function K does not depend on s if a*, b 
and cZ do not depend on s; this is the case, for example, if r = p(q) + ns, where n is a constant vector; 
in applications it frequently happens that r = p(q) + v(s). The variable p in (2.4) is expressed in terms 
of 4, q, u, while the generalized velocity 4 is related to the variables E, q and u in accordance with relations 
(2.2), which makes it possible, as in the case of Eqs (2.3), to average the equations of controlled motion 
on the basis of the first integral, by quadrature with respect to q. 

We can now formulate the problems of the time-optimal variation of E and of the variables s or u, 
respectively, or systems (2.3) and (2.4), and investigate them in an approximate setting: 

E(t,)=Ef, s(l,)=s’, tf3min,, u-susu+ 

(2.5) 
E(t/) = Ei, v(t,) = vf, rI + min,. w- c w s w+ 

It is proposed to construct an optimum synthesis for u as a function of q, g(p), s or for w as a 
function of q, Q(p), u, and also to compute the averaged slow variables E and s or E and u (see below), 
These formulations of the optimal control problem are fundamental. They are of particular interest 
for applications. 

In practice, however, one may have a situation in which the kinetic energy K(q, 4) is either independent 
of s and S, that is, r = r(q), or corresponds to the case r = n(q + s) + ro, where n and r. are constant 
vectors (see Section 4). One either allows U to depend on the parameters or introduces the variable 
I = q + s [2-4]. Then, within the framework of the approach proposed here, one can formulate an optimal 
control problem for oscillations of the system by bang-bang type variation of the parameters within 
certain narrow limits. The values of the parameters may determine the equilibrium positions or the 
coefficient of elasticity [3,4] (see Section 4). 

The equations of motion in the variables q and 0 or I and i have the form (1.4) with the right- 
hand side identically zero. The equations in Hamiltonian form (2.2) do not contain the functions b 
and c and their derivatives. For the slow variable E, corresponding to a certain given value of s = s*, 
the time-optimal problem has the form 

li:=(u;(q,s’)-I/,;(q,s~)~=-&l/~~(q,s*)qo+o(&2) 

E=)/2a2(q)cj2+U(q,s*), s=s*+m(i=O, s=s*) (2.6) 

E(f,.) = EJ, tf + min,, C- G CT s o+ 

We may assume without loss of generality that cr* = 2 1. This formulation of the problem permits 
a relatively small, almost instantaneous, change in the value of the restoring force $4: It will be interest- 
ing to compare the different modes obtained when the control is effected through s, S and s. 

3. SCHEMES FOR THE APPROXIMATE SOLUTION 
OF TIME-OPTIMAL PROBLEMS 

Applying the general approach of the maximum principle [l] and the asymptotic technique of [2-4] to 
systems (2.3), (2.4) and (2.6), we introduce conjugate variables, form the Hamiltonians of the control 
problems and maximize them with respect to ~1, w and o in the appropriate intervals. The maximum values 
of the Hamiltonian functions (Pontryagin functions) II are averaged over the phase cp, relative to which 
they are 2rc-periodic. This yields expressions for the Pontryagin functions in the first approximation with 
respect to E, as well as canonical (Hamiltonian) equations that do not contain fast variables. The averaged 
equations of the maximum principle admit of a first integral and the introduction of a slow variable r = 
U, which varies in a relatively short interval zf - 1. This constitutes a fundamental simplification in the 
analytical or numerical solution of the boundary-value problems of the maximum principle [2-4]. 

We will first consider the mode of control by adjustable variation of the velocity S = EU according to 
(2.3) and (2.5). The optimal control u*, the maximum value II* of the Hamiltonian and its average &II, 
are described by the following expressions (angular brackets denote averaging) 
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u* =d++d-sign\Y, Y =kF+q d* =J/;(u++~-), d- >o, d- >ld+l 

l-f’ = w+\Y + d- I Y I), (I-l*) = &l-I, = &(df (Y) + d_() y 1)) (3.1) 

where 5 and q are slow variables, conjugates of E and s, respectively; the quantities T(E, s), q’(E, s) 
are defined as in (1.5) and are found by investigating the uncontrolled motion, that is, the free oscillations 
of the system when s = const. We may assume without loss of generality that d- = 1 in (3.1); then 
Id+ 1 < 1. The typical situation in applications is usually d+ = 0, that is, ]u 1 s u. (ug = l), and the 
first terms in the functions u, II* and II0 are dropped. 

Using expressions (3.1), we obtain the averaged boundary-value problem of the maximum principle 
for IIo(E, s, 5, r), retaining the old notation 

E’ = l-I&, s’ = I-l&, , 5’ = -l-l;,, q* = -I-I& (3.2) 

E(O) = E”, E(z,) = Ef, s(O) = so, s(c,) = s’, l-I, = I 

Problem (3.2) contains five unknown parameters (including zf) and the same number of boundary 
conditions for determining them. In the general case, it may be solved by numerical methods. In some 
special cases the expression for II0 has a definite structure which enables the analytical methods of [2-4] 
to be used. 

We now consider the mode of control by acceleration variation: ti = EW, w- s w c w+ (see (2.4) and 
(2.5)). Expressions of type (3.1) for constructing the averaged boundary-value problem, similar to (3.2), 
have the same form with the following changes 

u* + Wf, Y =cG+rl, s+v, (i=b/%(E+~c%* -l# 

qf(E,v)=Arg,(E+Kc2(q)v * - Wq)) (3.3) 

where < and rl are slow variables conjugate to E and u. The structure of the averaged boundary-value 
problem for determining an approximate solution of the time-optimal problem with respect to the 
variables E and u is identical with (3.2), but the function G in (2.4) is given by an expression that is 
much simpler than F (2.3). In particular, if r = p(q) + ns, where n is the unit vector, then b = (p’, n), 
c* = 1, and the momentump = a24 + bv, where the increment bv is the projection of the velocity nv 
onto the direction p’ (apart from the factor a). 

The mode of control by adjustable variation of the parameters = s* + ECJ, lo] c 1, which occurs only 
in the expression for the restoring force Ui(q, s) (2.6), leads to simpler relations than (3.1)-(3.3), since 
there are no slow variables of type s and v or the corresponding conjugate variables. As a result, one 
obtains explicit expressions for the control o* and finite formulae for E and ~~ 

of = -sign(AEU&j), E’ = D(E)sign AE, AE = Ef - E 

P-4) 

T,=~~(E~,E*)=T(E’,E~,E’), q+(E)=Arg,(E-U(q,s’)) 

By determining the parts of the interval q- c q s q+ in which the sign of the function U& (q, s’) is 
invariable, one can obtain an explicit expression for D(E) as a function of U: (see Section 4.1). The 
period T(E) of the oscillations in (3.4) is determined in accordance with (1.5). 

It should be noted that for essentially non-linear systems, when the oscillation period depends on 
the energy and the slow variables, the control must be obtained by synthesis, since the fast variables, 
including the phase cp, are computed with an error O(1) [2-4]. After the conjugate variables 5 and rl 
have been found as functions of r, l? and so or v”, one substitutes z + 0, E + E and so + s or 
u” + u, which leads to a feedback control, i.e. one depending on q, 4 (orp) and s or v, which are assumed 
to be measurable. 
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4. SPECIFIC MODELS OF NON-LINEAR OSCILLATORS WITH 
ADJUSTABLE PARAMETERS 

4.1. A one-dimensional oscillator with controlled equilibrium position 
Consider the linear motion of a body of mass m = 1 driven by a non-linear elastic force in the 
neighbourhood of a stable equilibrium position (see Sections 1 and 2). Three control modes can be 
considered 

x=q+s, K=M(Cj+$‘, I/ = U(q), U(0) = U’(0) = . . . = u’*“-1’(o) = 0 

fj+U’(q)=-EW, ti =&w (S=v), W-S WG w+ 

4=p-EU, i,=--U’(q), S=:&U, u- =GuSu+ (4.1) 

According to (4.1) q = 0, 4 = 0 is a point of rest of the system if E = 0. Control by acceleration EW 
enables the system to be steered to a relative state of rest or oscillations with prescribed energy Ef 
(or amplitudes q’ (E)) and the desired velocity vf of displacement as a whole (see (2.4), (2.5)). If the 
velocity i = u1 of displacement of the equilibrium position can be adjusted, then a solution in variables 
q and p can be found for the problem of steering the system to position Ef, sf (see (2.3) and (2.5)). 
Finally, if the positions is the adjustable parameter (OCR is the control), then the oscillator will be brought 
to a state Ef (see (2.6)). Thus, the models (4.1) of controlled motions of the oscillator enable one to 
consider the three control modes just described: by acceleration, velocity and displacement of the 
equilibrium position. By (3.1)-(3.9, the optimal control problems for slow variables generally require 
the use of numerical methods to solve the appropriate boundary-value problems of the maximum 
principle [2-4]. 

Control by velocity variation has been studied fairly thoroughly in a quasi-linear setting by 
analytical methods [3, 41. It has been established, by changing to the amplitude A and phase cp, that 
the conjugates 5 and q of the corresponding slow variables A and s do not vary with time. The desired 
solution of the problem is completely determined in terms of the root x of a transcendental equation; 
we have 

z/ =(W(2d-))IM(Id=, AA= Af -A#O, As=sSf --s 

u*=d++d-sign(AA(x-q/A)), A=A’+AA’zlzOf, s=s”+Aso~/tOf 

(4.2) 

q=Asincp, ~=Acos(P, p=cj+Eu*, cp=t+O(I) 

Here the approximate optimum control u* is represented as a feedback; to construct a programmed 
control the phase cp must be constructed more accurately [3]. The unknown x is determined from the 
first equation of (4.2), either numerically or graphically, in terms of the given quantities hA, As and 
d+ld-. 

In the non-linear case, as already remarked, one has to resort to numerical methods to solve a non- 
linear boundary-value problem of type (3.2) so that considerable difficulties are involved. One possible 
procedure, nevertheless, is quasi-optimal subdivision of the control process, first varying the energy 
(amplitudes) of the relative oscillations in an optimal manner, and then moving the oscillator as quickly 
as possible to the desired position. Estimates indicate that the relative increase in time is small. 

We will briefly describe the solution of the time-optimal control problem when the energy of 
oscillations is varied. By (2.3), (3.1) and (3.2), we have 
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U* = d+ + d- sign(AEF(q)), F = -U’(q), AE = Ef - E 

z=T(E,E’,E’)=signAE o 1 ’ dx - j -*ff 
d- p F,(x) 

= z(E’ 15’ E’) 9 9 

F,(E)=- ;a,F,dt=@-?; T 4_ ,&dq=.dfis 

7 

(4.3) 

(The computation of the meanF@) used an expression for F(q) from [2-4].) It follows from (4.3) that 
zf will be finite for Ef = 0 if F,(E) -ES, 6 < 1, that is, if y > -l/2, where y is the exponent on the right 
of the estimate T(E) - Ey for small E. For example, if U = l/2q2, then T = 2n, and we obtain 
y = 0 > -i/2; h t en rf = &Es/2/d-. The treatment of controllability when E” = 0 is analogous. In the 
case of a power non-linearity U = k 1 q 1 p, p > 0, we obtain the formulae 

T(E) = t3(k,p)E”p-“2, 8=(2J27;/p)r(l/p)r-‘(K+llp)k-“P (4.4) 

E(T)=[(E’)“~+((E’)“~ -(E”)“P)rI~f]P, T/ =(pW(4ad-))I(E’)“P -(E”)“p 1 

where lY is the Euler gamma-function. For a power function U, it follows from (4.4) that rf will always 
be finite for E”,f = 0 (damping or build-up of oscillations). 

Note that sign Fq = -1, that is, the control “tends” to shift the equilibrium point toward a deviation 
that will reduce the restoring force. Conversely, to increase the energy of relative oscillations (oscillation 
build-up), the control merely has to increase the restoring force. Thus, the control of relative oscillations 
has the character of a resonance action. The oscillator is moved to the desired position sf by applying 
a constant control u** = d+ + d- sign As, which does not affect the value of the energy of relative 
oscillations within the range of accuracy considered here (error O(E)). If df = 0, it may be preferable 
to move the oscillator to the final point So and then change the energy of the oscillations. The control 
will be globally time-optimal if the slow variables are brought simultaneously to the final point Ef, sf, 
which means solving a boundary-value problem of type (3.2). 

Let us consider the process of controlling the motions of the oscillator by controlling the acceleration 
of the motion of the equilibrium position. By (4.1) we obtain the following equations for the energy 
E of relative oscillations and the velocity u (see (2.4) and (2.5)) 

ri=-_E4w, v’=&W, W-S WC w+, w’20 (4.5) 

To solve a boundary-value problem of type (3.2) (3.3) for system (4.5) in the general case of non- 
linear oscillations, one must resort to numerical methods. In a quasi-linear treatment, the solution of 
the time-optimal problem is constructed in terms of the variables A and u just as in the case previously 
considered of control by velocity. We recall that A = \ 2E is the amplitude of relative quasi-linear 
oscillations. The difference is that in formula (4.2) for the control u* (u’ + w’) one must substitute 
sincp + coscp. This means that the control, i.e. the acceleration of the equilibrium position, must have 
the same direction as the velocity of relative motion of the oscillator for the problem of reducing energy 
(damping of oscillations), that is, the “inertia force” is opposed to the velocity of the relative oscillations. 
Conversely, the acceleration of the equilibrium position will be opposed to the velocity, and the “inertia 
force” in the same direction, for the problem of oscillation build-up. 

Time-optimal control of non-linear oscillations ignoring the velocity v is achieved in a manner similar 
to that considered above (see (4.3) and (4.4)) 

w* = d+ -de sign(AQ). AE = Ef - E, cj = f&(E - U(q))% 

z=~(E,E’.El)=signAE-!- d_ EL &t ~~ =Wf,Eo,Ef) 

(W)=f[ 14ldt= &+y+(E)-q-(E)), q+ = Arg,(E-(I) 

(4.6) 

In particular, if the function U(q) has the form U = 
symmetric limits q* = 

k 141 p, the oscillations will take place between 
+ (E/k)‘@, and the function T(E) is as defined in (4.4). Thus, the mean 



8 L. D. wulenko 

( 141) - E II2 does not depend on p, indicating that the energy E(z) varies quadratically; see the formula 
for E in (4.4), in which one puts p L 2, while in the formula for 5 the factor is W(k,p)(dki@)-‘, where 
p > 0 is any number. After the required change in the energy of the relative oscillations, achieved by 
applying a constant control w** = d+ + d- signAv, the desired value of the velocity of the oscillator as 
a whole is obtained. As remarked, the sequence of stages of the control process may be changed and 
modified appropriately. 

Consider the problem of controlling the oscillations of an oscillator by regulating the equilibrium 
position; on the basis of the third model of (4.1). By (2.6), the equation for the change in energy E in 
the first approximation with respect to E is 

B=Eu;l(x-s*)xa, ]o]c I, E(O)=EO, E(t,)=E’ 

E = xi2 + lJ(x -s*), U(0) = f_/‘(O) = . . . = U'2"-"(0) = 0, ,!I(~~) > 0 (4.7) 

X- dxdX+, x+ =s*+c*(E), <'=Arg$E-U(c)) 

Using standard methods and the relations for the more general model (2.6), we obtain the desired 
solution to the time-optimal control problem 

cr* = sign(AEU;2 (x - s*)X), AE = Ef - E c 0 (AE > 0) 

E dx z=T(E,E',E')=singAE' j - 
pJ wo 

, Z, =T(E~,E’,@) (4.8) 

It follows from (4.8) that displacements &o, o = 21, of the equilibrium point s relative to the fixed 
value of s* occur twice in each period of oscillations, in a direction opposite to the velocity of deviation 
of the oscillator, and this happens exactly when the velocity changes sign. The time zfwill be finite for 
Ef = 0 (or E” = 0) if it is tru, 
we have the estimate D - E 7 

that D(E) -ES, 6 < 1, for small E. In the case of quasi-IinFar oscillations 
2. For azower non-linearity U = k 141 p, p > 0, we,obtain q- = + (E/k)‘@, 

that is, one has an estimate D - E3’2- p, analysis of which implies the inequality p c 4 as a precondition 
for 6 c 1. Thus, in the case of a cubic non-linearity (U - q4) or a non-linearity of higher order, bringing 
the oscillator to a state of rest Ef = 0 (or removing it from the state E” = 0) requires an “infinite time” 
rp The functions E(c) and the response time z(E’, Ef) for a non-linearity of the power type are 
determined by standard methods; they are obtained in an explicit form similar to (4.4), with appropriate 
changes in the parameters. 

Thus, the modes presented above for controlling the oscillations of an oscillator - by velocity, 
acceleration and equilibrium position - have interesting and instructive properties which are quite 
difficult to establish on the basis of intuitive conceptions. 

4.2. Models of oscillatory mechanical systems with controlled equilibrium positions 
Previously we investigated time-optimal control problems for the simplest model - a point or 
rigid body moving along a straight line and subject to an elastic restoring force with controlled equilibrium 
position. It should be noted that the non-linear force --U’(q) may be obtained by imposing ideal 
constraints on a system with linear elastic elements [3, 41. Consider a spring with linear characteristic, 
at one of whose ends there is a body of mass m which can move without friction along a straight line 
- the x axis. The other end of the spring may be displaced in a adjustable manner along a parallel 
straight line s (Fig. 1). Suppose the distance between the straight lines is d, and the length of the non- 
deformable spring 1 = lo. Then the following formulae hold for the kinetic and potential energies of 
the system 

K =Wmi*, lJ=)/?k6=, 8=/-l,, l=(d2+q2)“*, q=x-s (4.9) 

The variables and parameters of the problem may be normalized so that m = k = d = 1. If d ~10, 
the spring will be stretched for all q; then q = 0 is a stable equilibrium position of the “centre” type. 
Time-optimal problems analogous to those studied in Section 4.1 can be formulated and their approxi- 
mate solutions found. For small values of Iql (relatively large d) the oscillations of the system will be 
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nearly linear, and the control problem may be investigated in a quasi-linear setting. For large deviations 
191 the oscillations are essentially non-linear and separate quasi-optimal controls may be constructed 
for the problem. 

When d c lo, we have 6 3 0, depending on q, with q = 0 an unstable equilibrium position of the body, 
of the “saddle” type. In addition, there are two symmetric stable points of the “centre” type: 

4* = *(l&d) . ’ ‘h In this case optimal control problems may be investigated approximately both in 
the neighbourhood of each stable point and “in the large,” taking into account passage through the 
saddle point (separatrix crossing), corresponding to the compressed state of the spring. 

The case d = 1, is critical, since the function U(q) contains no quadratic terms: U = Wcde2q4 + O(q6), 
and the restoring force 4’ is a cubic function for small 1st. This situation leads to essentially non- 
linear oscillations, whose approximate control may be achieved by the methods described above. 

We now consider another plane model of one-dimensional oscillations, as illustrated in Fig. 2. Suppose 
a point of mass m is moving without friction along a circular guide of radius R. It is driven by a non- 
linear elastic force (spring) with potential U(q) (in particular, U = i/2kg2), where q = R(y - IY), where 
tl~ is the angular coordinate of the point and 6 is the angular coordinate of the other end of the spring 
or the equilibrium position of the restoring force. Then, taking the geometrical constraints into account, 
we obtain the following formulae (see (1.1) and (1.2)) 

Fig. 2 
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K =)/2mR2jt2.U =U(q), x= Rcosv, y= Rsinv (4.10) 

which lead to the model considered above, of type (4.1), that is, the control problems for motion around 
a circle and along a straight line are equivalent. If a fixed point of a rigid body (such as its centre of 
mass) is moving around a circle, preserving the orientation of the body, then formulae (4.10) remain 
valid. One can also consider a more complicated function U(q, s), s = R6. 

Suppose the body is subject to a constraint: while its centre of mass is moving around the circle, the 
body itself is revolving about its centre of mass, while maintaining its direction relative to the tangent: 
a = 7r/2 + w + p, where p = const and a is the angle of rotation of the body. Then the total kinetic 
energy, including that of rotation, is 

K = x mR2q2 + x ict2 = )/2(rnR’ + I)q2 

which is identical with (4.10), apart from a constant factor. This property may be used locally for arbitrary 
fairly continuous curves and is therefore of interest for applications. 

$3. An oscillator with controlled stiffness 
In the context of applications, it may be important to investigate the control problem for non-linear 
oscillatory systems controlled by adjustable variation, over a small interval, of some parameter charac- 
terizing the elastic restoring force, such as the coefficient of elasticity. This mode of control is extremely 
effective when there are pronounced oscillations, since it may lead to a rapid, e.g. exponential, change 
in amplitude, as in the case of parametric oscillations at resonance. Present-day technological and 
computational means make it possible to realize this model of control in real time [2-4]. 

Suppose the centre of mass of a rigid body can move along a fixed continuous curve r(q); the body 
is subject to an elastic force with adjustable coefficient x; the potential of the force is W(r, x); we have 

K = xa2(q)i2, W = V(q,x), x = x0(1 + E/.L), 1 p 1s PO 

a2(q)ij+a(q)a’(q)lj2+V~(q,x)=0. E=)/2a2(q)G2+V(q,xo) 

4 = pae2(q), p = p2a’am3(q) - Vd(q,x), 9*(x0) = arg, Vi(q,“o) 

H=)/ppZa-2(q)+V(q,~), E=1/2~~a-~(q)+V(q,xo) 

(4.11) 

Without loss of generality, we can assume that the mass m of the body and the parameters x0 and 
u. are equal to unity. The case in which V(q, x) is a multiplicative function of X, that is, Vi = xU’(q), 
where U is a smooth function of q, is of special interest. Then the point of rest q* is independent of 
the parameter x0 and we may assume that q’ = 0; we shall assume that it is stable. We obtain an equation 
and boundary conditions for the unperturbed energy integral E (4.11) with E > 0, in the first 
approximation with respect to E 

ri = &F(q)&, F = -V&(q, 1) (F = -U;(q)) 

E(O)= E”, E(t,)= El, tf +=min,, 1~1s 1 (4.12) 

The solution of problem (4.12) is constructed approximately, following the scheme described 
previously; we have the following formulae 

u* = sign(hEFcj), 4 = I&a-‘(E - V)K, r, = t(Ef, E”, Ef) (4.13) 

~=~(E,E”,Ef)=signAEo 7 -k 
&O W)’ 

Q(E)=+-[I Fkldt=% 
T(E) 

By the third relation in (4.13), the quantity zf will be finite when EoSf = 0 if the period satisfies an 
estimate T(E) - Ey, y > 0, that is, the oscillation frequency increases without limit as E + 0. Let 
v= x 141 p; then, by (4.4), we obtain 

T(E) = f3(~,p)E”~-“*, CD(E) = (4/Q)E-“p+3’2 (4.14) 

Formulae (4.13) and (4.14) imply the controllability condition p c 2; this means that, in the case of 
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linear elasticity (and the potential is a power function of the displacement, to a higher order), the required 
time z/is not bounded as E o’f+ 0. The required functions E(z) and 5 are explicitly defined (see (4.4)). 
Note that the optimal control p’ changes sign four times in a time interval t equal to the period, since 
sign (F(q)q) = 1. If the behaviour of the potential V(q, 1) is more complicated, system (4.11) may have 
several equilibria. This situation requires further study of the control problem, because of the presence 
of saddle points and separatrix-crossing by the phase trajectory. 
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